KMS Nanjing Institute of Geology and Palaeonotology,CAS
The Architecture of Adaptive Lignin Biosynthesis Navigating Environmental Stresses in Plants | |
通讯作者 | Zhu, Daochen(dczhucn@ujs.edu.cn) |
Jalal, Abdul1,2; Wang, Yongli1,2; Cai, Chenyang3![]() | |
2025 | |
发表期刊 | JOURNAL OF AGRONOMY AND CROP SCIENCE (IF:2.571[JCR-2017],2.743[5-Year]) |
ISSN | 0931-2250 |
卷号 | 211期号:1页码:13 |
摘要 | In natural ecosystems, plants are under continuous environmental stresses, compromising plants' survival and propagation. Being sessile in nature, plants evolved various signalling pathways to cope with adverse changing environments, and to optimise their adaptation to terrestrial conditions. The plant cell wall, rich in polymers, is actively engaged in the signalling process. In this context, the phenylpropanoid pathway, producing protective secondary metabolites like flavonoids and lignin, played a crucial role in the early plants' colonisation on land. In this review, we highlighted the current knowledge and the impending gaps of lignin biosynthesis in plants, and the hydrophobic and impervious properties of lignin facilitating effective transportation of solutes and water within vascular system along with its significance to protect plants from environmental stressors either abiotic like temperature, drought, salinity and heavy metals or biotic such as herbivorous insects, root-knot nematodes and phytopathogens. Additionally, the identification of essential biosynthetic genes that play a role in regulating lignin biosynthesis, as well as their contribution to improving stress tolerance through modifications in lignification of cell wall and biochemical mechanisms of lignin in the evolution of land plants are discussed, including the synergistic action of dirigent proteins and laccase in producing monolignol radicals. This discussion provided future research direction to develop genetic engineering approaches to improve lignin in terrestrial plants and develop stress-tolerant plants that will improve the resilience and survival of plants under challenging environmental conditions. |
关键词 | abiotic stress biotic stress lignification lignin biosynthesis pathway terrestrial plants |
DOI | 10.1111/jac.70012 |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | ARABIDOPSIS-THALIANA ; PHENYLPROPANOID METABOLISM ; TRANSCRIPTIONAL REGULATION ; HYPERSENSITIVE RESISTANCE ; DIRIGENT PROTEINS ; ABIOTIC STRESSES ; GENE-EXPRESSION ; CELL BIOLOGY ; LIGNIFICATION ; INFECTION |
资助项目 | Ministry of Science and Technology of China, National Key R&D Program of China[2023YFC3403600] ; National Key R & D Program of China[5593290490748] ; Elsevier[RGP2/328/45] ; Deanship of Scientific Research at King Khalid University Saudi Arabia |
WOS研究方向 | Agriculture |
WOS类目 | Agronomy |
WOS记录号 | WOS:001375900900001 |
项目资助者 | Ministry of Science and Technology of China, National Key R&D Program of China ; National Key R & D Program of China ; Elsevier ; Deanship of Scientific Research at King Khalid University Saudi Arabia |
出版者 | WILEY |
文献类型 | 期刊论文 |
条目标识符 | http://ir.nigpas.ac.cn/handle/332004/44688 |
专题 | 中国科学院南京地质古生物研究所 |
通讯作者 | Zhu, Daochen |
作者单位 | 1.Jiangsu Univ, Biofuels Inst, Sch Environm & Safety Engn, Int Joint Lab Synthet Biol & Biomass Biorefinery, Zhenjiang, Peoples R China 2.Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou, Peoples R China 3.Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Ctr Excellence Life & Paleoenvironment, State Key Lab Palaeobiol & Stratig, Nanjing, Peoples R China 4.Nanjing Agr Univ, Coll Hort, State Key Lab Crop Genet & Germplasm Enhancement, Minist Sci & Technol, Nanjing, Peoples R China 5.Univ Hail, Coll Sci, Dept Biol, Hail, Saudi Arabia 6.King Khalid Univ, Appl Coll, Ctr Bee Res & Its Prod CBRP, Unit Bee Res & Honey Prod, Abha, Saudi Arabia |
推荐引用方式 GB/T 7714 | Jalal, Abdul,Wang, Yongli,Cai, Chenyang,et al. The Architecture of Adaptive Lignin Biosynthesis Navigating Environmental Stresses in Plants[J]. JOURNAL OF AGRONOMY AND CROP SCIENCE,2025,211(1):13. |
APA | Jalal, Abdul.,Wang, Yongli.,Cai, Chenyang.,Ayaz, Aliya.,Alabbosh, Khulood Fahad.,...&Zhu, Daochen.(2025).The Architecture of Adaptive Lignin Biosynthesis Navigating Environmental Stresses in Plants.JOURNAL OF AGRONOMY AND CROP SCIENCE,211(1),13. |
MLA | Jalal, Abdul,et al."The Architecture of Adaptive Lignin Biosynthesis Navigating Environmental Stresses in Plants".JOURNAL OF AGRONOMY AND CROP SCIENCE 211.1(2025):13. |
条目包含的文件 | ||||||
条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论