NIGPAS OpenIR
Automated graptolite identification at high taxonomic resolution using residual networks
Niu, Zhi-Bin1,2,3; Jia, Si-Yuan1; Xu, Hong-He2,3
2024-01-19
发表期刊ISCIENCE
卷号27期号:1页码:14
摘要

Graptolites, fossils significant for evolutionary studies and shale gas exploration, are traditionally identified visually by taxonomists due to their intricate morphologies and preservation challenges. Artificial intelligence (AI) holds great promise for transforming such meticulous tasks. In this paper, we demonstrate that graptolites can be identified with taxonomist accuracy using a deep learning model. We construct the most sophisticated and largest professional single organisms image dataset to date, which is composed of >34,000 images of 113 graptolite species annotated at pixel-level resolution to train the model, develop, and evaluate deep learning networks to classify graptolites. The model's performance surpassed taxonomists in accuracy, time, and generalization, achieving 86% and 81% accuracy in identifying graptolite genus and species, respectively. This AI-based method, capable of recognizing minute morphological details better than taxonomists, can be integrated into web and mobile apps, extending graptolite identification beyond research institutes and enhancing shale gas exploration efficiency.

DOI10.1016/j.isci.2023.108549
收录类别SCI
语种英语
关键词[WOS]CONVOLUTIONAL NEURAL-NETWORKS ; CLASSIFICATION ; CANCER ; SYSTEM
资助项目CAS ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA19050101] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB26000000] ; National Natural Science Foundation of China[61802278]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001138147000001
项目资助者CAS ; Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China
出版者CELL PRESS
文献类型期刊论文
条目标识符http://ir.nigpas.ac.cn/handle/332004/42932
专题中国科学院南京地质古生物研究所
通讯作者Niu, Zhi-Bin; Xu, Hong-He
作者单位1.Tianjin Univ, Coll Intelligence & Comp, Tianjin 300354, Peoples R China
2.Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, State Key Lab Palaeobiol & Stratig, Nanjing 210008, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Life & Paleoenvironm, Nanjing 210008, Peoples R China
第一作者单位中国科学院南京地质古生物研究所
通讯作者单位中国科学院南京地质古生物研究所
推荐引用方式
GB/T 7714
Niu, Zhi-Bin,Jia, Si-Yuan,Xu, Hong-He. Automated graptolite identification at high taxonomic resolution using residual networks[J]. ISCIENCE,2024,27(1):14.
APA Niu, Zhi-Bin,Jia, Si-Yuan,&Xu, Hong-He.(2024).Automated graptolite identification at high taxonomic resolution using residual networks.ISCIENCE,27(1),14.
MLA Niu, Zhi-Bin,et al."Automated graptolite identification at high taxonomic resolution using residual networks".ISCIENCE 27.1(2024):14.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S258900422302(4566KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Niu, Zhi-Bin]的文章
[Jia, Si-Yuan]的文章
[Xu, Hong-He]的文章
百度学术
百度学术中相似的文章
[Niu, Zhi-Bin]的文章
[Jia, Si-Yuan]的文章
[Xu, Hong-He]的文章
必应学术
必应学术中相似的文章
[Niu, Zhi-Bin]的文章
[Jia, Si-Yuan]的文章
[Xu, Hong-He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。