KMS Nanjing Institute of Geology and Palaeonotology,CAS
Automated graptolite identification at high taxonomic resolution using residual networks | |
Niu, Zhi-Bin1,2,3; Jia, Si-Yuan1; Xu, Hong-He2,3 | |
2024-01-19 | |
发表期刊 | ISCIENCE |
卷号 | 27期号:1页码:14 |
摘要 | Graptolites, fossils significant for evolutionary studies and shale gas exploration, are traditionally identified visually by taxonomists due to their intricate morphologies and preservation challenges. Artificial intelligence (AI) holds great promise for transforming such meticulous tasks. In this paper, we demonstrate that graptolites can be identified with taxonomist accuracy using a deep learning model. We construct the most sophisticated and largest professional single organisms image dataset to date, which is composed of >34,000 images of 113 graptolite species annotated at pixel-level resolution to train the model, develop, and evaluate deep learning networks to classify graptolites. The model's performance surpassed taxonomists in accuracy, time, and generalization, achieving 86% and 81% accuracy in identifying graptolite genus and species, respectively. This AI-based method, capable of recognizing minute morphological details better than taxonomists, can be integrated into web and mobile apps, extending graptolite identification beyond research institutes and enhancing shale gas exploration efficiency. |
DOI | 10.1016/j.isci.2023.108549 |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | CONVOLUTIONAL NEURAL-NETWORKS ; CLASSIFICATION ; CANCER ; SYSTEM |
资助项目 | CAS ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA19050101] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB26000000] ; National Natural Science Foundation of China[61802278] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001138147000001 |
项目资助者 | CAS ; Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China |
出版者 | CELL PRESS |
文献类型 | 期刊论文 |
条目标识符 | http://ir.nigpas.ac.cn/handle/332004/42932 |
专题 | 中国科学院南京地质古生物研究所 |
通讯作者 | Niu, Zhi-Bin; Xu, Hong-He |
作者单位 | 1.Tianjin Univ, Coll Intelligence & Comp, Tianjin 300354, Peoples R China 2.Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, State Key Lab Palaeobiol & Stratig, Nanjing 210008, Peoples R China 3.Chinese Acad Sci, Ctr Excellence Life & Paleoenvironm, Nanjing 210008, Peoples R China |
第一作者单位 | 中国科学院南京地质古生物研究所 |
通讯作者单位 | 中国科学院南京地质古生物研究所 |
推荐引用方式 GB/T 7714 | Niu, Zhi-Bin,Jia, Si-Yuan,Xu, Hong-He. Automated graptolite identification at high taxonomic resolution using residual networks[J]. ISCIENCE,2024,27(1):14. |
APA | Niu, Zhi-Bin,Jia, Si-Yuan,&Xu, Hong-He.(2024).Automated graptolite identification at high taxonomic resolution using residual networks.ISCIENCE,27(1),14. |
MLA | Niu, Zhi-Bin,et al."Automated graptolite identification at high taxonomic resolution using residual networks".ISCIENCE 27.1(2024):14. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论