KMS Nanjing Institute of Geology and Palaeonotology,CAS
Phosphorus cycling during the Hirnantian glaciation | |
Mueller, Johann1; Joachimski, Michael M.1; Lehnert, Oliver1,2,3; Mannik, Peep4; Sun, Yadong5 | |
2024-01-15 | |
发表期刊 | PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY
![]() |
ISSN | 0031-0182 |
卷号 | 634页码:15 |
摘要 | Unlike other mass extinctions of the Phanerozoic, the Late Ordovician mass extinction took place during an icehouse interval, accompanied by the glaciation of Gondwana. Ice sheets reached their maximum during the Hirnantian and global sea-level dropped substantially. Consequently, the shallow tropical shelf environments of Laurentia and Baltica became subaerially exposed or remaining submerged shelves were characterized by very shallow water-depths. Redox proxies suggest that most shallow shelf settings were well oxygenated to that time, while the global extent of anoxic environments increased, implying that deoxygenation was confined to the open ocean. We speculate that the burial rate of the nutrient phosphorus (P) on shelves was minimal during the Hirnantian glacial maximum (HGM) due to bypass of the shelves in respect to the incoming riverine dissolved load. Hence, a large excess of bioavailable P entering the open ocean would have stimulated phytoplankton production which lowered oxygen concentrations by aerobic respiration.In order to test this hypothesis, we determined reactive P (Preact) contents in two low-latitude carbonate successions (Anticosti Island and Estonia) spanning the HGM. Moreover, we measured total organic carbon (C) concentrations and calculated C/P ratios to evaluate the burial efficiency of P. Samples from both sites are characterized by overall low Preact contents. We observe a decreasing trend in Preact towards the HGM, reaching a minimum during the initial transgression thereafter. C/P ratios suggest efficient P-burial throughout the study interval and, hence, Preact contents are assumed to be a direct measure of primary productivity, P-availability, and P-burial. Using the Preact concentrations, we modeled shelf P-burial fluxes with estimates for global shelf area and sedimentation rates. The model suggests that shelf P-burial fluxes around the HGM were approximately halved due to a reduced shelf area and minimum Preact contents. With the assumption of a constant P-input to the ocean, the proposed scenario serves as a plausible explanation for the observed redox gradients. |
关键词 | Phosphorus cycle Hirnantian Glaciation Primary productivity Sea level Anoxia |
DOI | 10.1016/j.palaeo.2023.111906 |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | ORDOVICIAN-SILURIAN BOUNDARY ; CARBON-ISOTOPE STRATIGRAPHY ; SEA-LEVEL CHANGE ; ANTICOSTI ISLAND ; DELTA-C-13 CHEMOSTRATIGRAPHY ; CHITINOZOAN BIOSTRATIGRAPHY ; SEQUENTIAL EXTRACTION ; ENVIRONMENTAL-CHANGES ; MARINE-SEDIMENTS ; OCEAN |
资助项目 | Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) Research Unit TERSANE[FOR 2332] ; Natural Science Foundation of China(NSFC )[41821001] ; Natural Science Foundation of China(NSFC )[42272022] ; Estonian Research Council[LE 867/8-1 8-2] ; Deutsche Forschungsgemeinschaft (DFG)[LE 867/12-1] ; Rise of Ordovician Life ; DFG[Jo 219/16] ; International Continental Scientific Drilling Program[ICDP-SPP 1006] ; [PRG1701] |
WOS研究方向 | Physical Geography ; Geology ; Paleontology |
WOS类目 | Geography, Physical ; Geosciences, Multidisciplinary ; Paleontology |
WOS记录号 | WOS:001115521500001 |
项目资助者 | Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) Research Unit TERSANE ; Natural Science Foundation of China(NSFC ) ; Estonian Research Council ; Deutsche Forschungsgemeinschaft (DFG) ; Rise of Ordovician Life ; DFG ; International Continental Scientific Drilling Program |
出版者 | ELSEVIER |
文献类型 | 期刊论文 |
条目标识符 | http://ir.nigpas.ac.cn/handle/332004/42795 |
专题 | 中国科学院南京地质古生物研究所 |
通讯作者 | Mueller, Johann |
作者单位 | 1.Friedrich Alexander Univ FAU Erlangen Nurnberg, GeoZentrum Nordbayern, Schlossgarten 5, D-91054 Erlangen, Germany 2.Chinese Acad Sci, Key Lab Econ Stratig & Palaeogeog, Nanjing Inst Geol & Palaeontol, Nanjing, Peoples R China 3.Czech Univ Life Sci Prague, Fac Environm Sci, Kamycka 129, Prague, Czech Republic 4.Tallinn Univ Technol, Inst Geol, Ehitajate Tee 5, EE-19086 Tallinn, Estonia 5.China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China |
推荐引用方式 GB/T 7714 | Mueller, Johann,Joachimski, Michael M.,Lehnert, Oliver,et al. Phosphorus cycling during the Hirnantian glaciation[J]. PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY,2024,634:15. |
APA | Mueller, Johann,Joachimski, Michael M.,Lehnert, Oliver,Mannik, Peep,&Sun, Yadong.(2024).Phosphorus cycling during the Hirnantian glaciation.PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY,634,15. |
MLA | Mueller, Johann,et al."Phosphorus cycling during the Hirnantian glaciation".PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY 634(2024):15. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论