NIGPAS OpenIR
Automated leaf physiognomic character identification from digital images
MacLeod, Norman1,2,3; Steart, David1,4
2015-09-01
发表期刊PALEOBIOLOGY
ISSN0094-8373
卷号41期号:4页码:528-553
摘要

Research into the relationship between leaf form and climate over the last century has revealed that, in many species, the sizes and shapes of leaf characters exhibit highly structured and predictable patterns of variation in response to the local climate. Several procedures have been developed that quantify covariation between the relative abundance of plant character states and the states of climate variables as a means of estimating paleoclimate parameters. One of the most widely used of these is the Climate Leaf Analysis Multivariate Program (CLAMP). The consistency, accuracy and reliability with which leaf characters can be identified and assigned to CLAMP character-state categories is critical to the accuracy of all CLAMP analyses. Here we report results of a series of performance tests for an image-based, fully automated at the point of use, leaf character scoring system that can be used to generate CLAMP leaf character state data for: leaf bases (acute, cordate and round), leaf apices (acute, attenuate), leaf shapes (ovate, elliptical and obovate), leaf lobing (unlobed, lobed), and leaf aspect ratios (length/width). This image-based system returned jackknifed identification accuracy ratios of between 87% and 100%. These results demonstrate that automated image-based identification systems have the potential to improve paleoenvironmental inferences via the provision of accurate, consistent and rapid CLAMP leaf-character identifications. More generally, our results provide strong support for the feasibility of using fully automated, image-based morphometric procedures to address the general problem of morphological character-state identification.

DOI10.1017/pab.2015.13
语种英语
关键词[WOS]MARGIN ANALYSIS ; FOSSIL LEAVES ; BLIND TEST ; CLIMATE ; CLASSIFICATION ; MORPHOMETRICS ; PALEOCLIMATE ; VEGETATION ; SHAPE
资助项目Natural History Museum ; South African National Research Foundation ; Palaeontological Science Trust (PAST) ; University of the Witwatersrand
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology ; Evolutionary Biology ; Paleontology
WOS类目Biodiversity Conservation ; Ecology ; Evolutionary Biology ; Paleontology
WOS记录号WOS:000364152900002
项目资助者Natural History Museum ; South African National Research Foundation ; Palaeontological Science Trust (PAST) ; University of the Witwatersrand
出版者CAMBRIDGE UNIV PRESS
文献类型期刊论文
条目标识符http://ir.nigpas.ac.cn/handle/332004/21759
专题中国科学院南京地质古生物研究所
通讯作者MacLeod, Norman
作者单位1.Nat Hist Museum, London SW7 5BD, England
2.UCL, Dept Earth Sci, London WC1E 6BT, England
3.Nanjing Inst Geol & Palaeontol, Nanjing, Jiangsu, Peoples R China
4.La Trobe Univ, Melbourne, Vic 3086, Australia
推荐引用方式
GB/T 7714
MacLeod, Norman,Steart, David. Automated leaf physiognomic character identification from digital images[J]. PALEOBIOLOGY,2015,41(4):528-553.
APA MacLeod, Norman,&Steart, David.(2015).Automated leaf physiognomic character identification from digital images.PALEOBIOLOGY,41(4),528-553.
MLA MacLeod, Norman,et al."Automated leaf physiognomic character identification from digital images".PALEOBIOLOGY 41.4(2015):528-553.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Automated leaf physi(1223KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[MacLeod, Norman]的文章
[Steart, David]的文章
百度学术
百度学术中相似的文章
[MacLeod, Norman]的文章
[Steart, David]的文章
必应学术
必应学术中相似的文章
[MacLeod, Norman]的文章
[Steart, David]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。